Explicit A Priori Bounds on Transfer Operator Eigenvalues

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit a priori bounds on transfer operator eigenvalues

We provide explicit bounds on the eigenvalues of transfer operators defined in terms of holomorphic data. Linear operators of the form Lf = ∑ i∈I wi · f ◦ Ti, so-called transfer operators (see e.g. [Bal, Rue1, Rue2]), arise in a number of problems in dynamical systems. If the Ti are inverse branches of an expanding map T , and the weight functions wi are positive, the spectrum of L has well-kno...

متن کامل

Universal Bounds for Eigenvalues of Schrödinger Operator on Riemannian Manifolds

Abstract. In this paper we consider eigenvalues of Schrödinger operator with a weight on compact Riemannian manifolds with boundary (possibly empty) and prove a general inequality for them. By using this inequality, we study eigenvalues of Schrödinger operator with a weight on compact domains in a unit sphere, a complex projective space and a minimal submanifold in a Euclidean space. We also st...

متن کامل

On Quantitative Bounds on Eigenvalues of a Complex Perturbation of a Dirac Operator

We prove a Lieb-Thirring type inequality for a complex perturbation of a d-dimensional massive Dirac operator Dm,m ≥ 0, d ≥ 1 whose spectrum is ] − ∞,−m] ∪ [m,+∞[. The difficulty of the study is that the unperturbed operator is not bounded from below in this case, and, to overcome it, we use the methods of complex function theory. The methods of the article also give similar results for complex...

متن کامل

Extrinsic Bounds for Eigenvalues of the Dirac Operator

We derive upper eigenvalue bounds for the Dirac operator of a closed hypersurface in a manifold with Killing spinors such as Euclidean space, spheres or hyperbolic space. The bounds involve the Willmore functional. Relations with the Willmore inequality are briefly discussed. In higher codimension we obtain bounds on the eigenvalues of the Dirac operator of the submanifold twisted with the spin...

متن کامل

On Eigenvalues of Lamé Operator

We introduce two integral representations of monodromy on Lamé equation. By applying them, we obtain results on hyperelliptic-to-elliptic reduction integral formulae, finite-gap potential and eigenvalues of Lamé operator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2007

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-007-0355-7